Enhanced cyclophosphamide and ifosfamide activation in primary human hepatocyte cultures: response to cytochrome P-450 inducers and autoinduction by oxazaphosphorines.

نویسندگان

  • T K Chang
  • L Yu
  • P Maurel
  • D J Waxman
چکیده

The anticancer oxazaphosphorine prodrugs cyclophosphamide and ifosfamide are activated in human liver by a 4-hydroxylation reaction catalyzed by multiple cytochrome P450 (CYP) enzymes. In the present study, we used a cultured human hepatocyte model to identify possible inducers of the CYP-catalyzed activation of these two anticancer prodrugs. Treatment of primary cultures of human hepatocytes with phenobarbital, dexamethasone, or rifampin elevated hepatocyte microsomal oxazaphosphorine 4-hydroxylation by up to 200-400% of control for both drug substrates. These inductions were associated with corresponding increases in immunoreactive CYP2B6, CYP2C8, CYP2C9, and CYP3A4, all previously shown to catalyze oxazaphosphorine activation. Rifampin (1 microM, 96-h exposure) was a particularly potent inducer of ifosfamide and cyclophosphamide 4-hydroxylation, as well as of CYP3A protein levels and CYP3A-dependent testosterone 6beta-hydroxylation. CYP3A4, CYP2C8, and CYP2C9 protein levels were also increased by exposure of the hepatocytes to cyclophosphamide or ifosfamide (50 microM), which thereby enhanced their own rates of 4-hydroxylation in the cultured hepatocytes. In one human hepatocyte culture that contained the polymorphically expressed CYP3A5 in addition to the more widely expressed CYP3A4, only CYP3A4 was induced by cyclophosphamide, ifosfamide, and rifampin. These studies: (a) demonstrate an underlying metabolic basis for the clinically important oxazaphosphorine autoinduction pharmacokinetics seen with these drugs in cancer patients; and (b) identify rifampin and other CYP inducers as potentially useful for increasing the rates of cyclophosphamide 4-hydroxylation and ifosfamide 4-hydroxylation in human liver in a manner that could favorably impact the clinical pharmacokinetics of these anticancer prodrugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intratumoral activation and enhanced chemotherapeutic effect of oxazaphosphorines following cytochrome P-450 gene transfer: development of a combined chemotherapy/cancer gene therapy strategy.

Cyclophosphamide and its isomer ifosfamide are cell cycle-nonspecific alkylating agents that undergo bioactivation catalyzed by liver cytochrome P-450 enzymes. The therapeutic efficacy of these oxazaphosphorine anticancer drugs is limited by host toxicity resulting from the systemic distribution of activated drug metabolites formed in the liver. Since tumor cells ordinarily do not have the capa...

متن کامل

Intratumoral Activation and Enhanced Chemotherapeutic Effect of Oxazaphosphorines following Cytochrome P-450 Gene Transfer: Development of a Combined Chemotherapy/Cancer Gene Therapy Strategy1

Cyclophosphamide and its isomer ifosfamide are cell cycle-nonspecific alkylating agents that undergo bioactivation catalyzed by liver cytochrome P-450 enzymes. The therapeutic efficacy of these oxazaphosphorine anticancer drugs is limited by host toxicity resulting from the sys temic distribution of activated drug metabolites formed in the liver. Since tumor cells ordinarily do not have the cap...

متن کامل

In vitro activity of oxazaphosphorines in childhood acute leukemia: preliminary report.

Glufosfamide (beta-D-glucosyl-ifosfamide mustard) is a new agent for cancer chemotherapy. Its pharmacology is similar to commonly used oxazaphosphorines, but it does not require activation by hepatic cytochrome P-450 and preclinically demonstrates lower nephrotoxicity and myelosuppression than ifosfamide. The aim of the study was a comparison of the drug resistance profiles of glufosfamide and ...

متن کامل

Differential Activation of Cyclophosphamide and Ifosphamide by Cytochromes P-450 2B and 3A in Human Liver Microsomes 1

J The present study identifies the specific human cytochrome P-450 (CYP) enzymes involved in hydroxylation leading to activation of the anticancer drug cyclophosphamide and its isomeric analogue, ifosphamide. Substantial interindividual variation (4-9-fold) was observed in the hydroxylation of these oxazaphosphorines by a panel of 12 human liver microsomes, and a significant correlation was obt...

متن کامل

Differential Activation of Cyclophosphamide and Ifosphamide by Cytochromes P-450 2B and 3A in Human Liver Microsomes 1

J The present study identifies the specific human cytochrome P-450 (CYP) enzymes involved in hydroxylation leading to activation of the anticancer drug cyclophosphamide and its isomeric analogue, ifosphamide. Substantial interindividual variation (4-9-fold) was observed in the hydroxylation of these oxazaphosphorines by a panel of 12 human liver microsomes, and a significant correlation was obt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 57 10  شماره 

صفحات  -

تاریخ انتشار 1997